feATURES

- Excellent Slew Rate to Power Ratio
- Slew Rate: 5V/us
- Maximum Supply Current: $100 \mu \mathrm{~A} / \mathrm{Amplifier}$
- Maximum Offset Voltage: $30 \mu \mathrm{~V}$
- Maximum Offset Voltage Drift: $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High Dynamic Input Impedance
- Fast Recovery from Shutdown
- Maximum Input Bias Current: 3nA
- No Output Phase Inversion
- Gain Bandwidth Product: 400kHz
- Wide Specified Supply Range: 3V to 30V
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- DFN and MS8 Packages
- Rail-to-Rail Outputs

APPLICATIONS

- Precision Signal Processing
- 18-Bit DAC Amplifier
- Multiplexed ADC Applications
- Low Power Portable Systems
- Low Power Wireless Sensor Networks

Dual Micropower, 5V/us Precision Rail-to-Rail Output Amplifier

DESCRIPTIOn

The LT®6020 is alow power, enhanced slew rate, precision operational amplifier. The proprietary circuit topology of this amplifier gives excellent slew rate at low quiescent power dissipation without compromising precision or settling time. In addition, unique input stage circuitry allows the input impedance to remain high during input voltage steps as large as 5 V . The combination of precision specs along with fast settling makes this part ideal for MUX applications.

The low quiescent current of the LT6020 along with its ability to operate on supplies as low as 3 V make it useful in portable systems. The LT6020-1 features a shutdown mode which reduces the typical supply current to $1.4 \mu \mathrm{~A}$.

The LT6020 is available in the small 8-lead DFN and 8-lead MSOP packages. The LT6020-1 is available in a 10 -lead DFN package.

[^0]
TYPICAL APPLICATION

16 -Bit DAC with $\pm 10 \mathrm{~V}$ Output Swing

20V Output Step Response

LT6020/LT6020-1

ABSOLUTG MAXIMUM RATINGS

(Note 1)
Total Supply Voltage (V^{+}to V^{-})................................. 36 V
Differential Input Voltage (within Supplies)36V
Input Voltage (DGND, EN) (Relative to V^{-})................ 36 V
Input Current (+IN, -IN, DGND, EN) $\pm 10 \mathrm{~mA}$
Output Short-Circuit Duration Indefinite

Operating and Specified Temperature Range
I-Grade. \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
H-Grade ... $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Junction Temperature \qquad
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PIn CONFIGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING*	PACKAGE DESCRIPTION	TEMPERATURE RANGE
LT6020IDD\#PBF	LT6020IDD\#TRPBF	LGMC	8 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6020HDD\#PBF	LT6020HDD\#TRPBF	LGMC	8 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6020IDD-1\#PBF	LT6020IDD-1\#TRPBF	LGKF	10 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6020HDD-1\#PBF	LT6020HDD-1\#TRPBF	LGKF	10 -Lead $(3 \mathrm{~mm} \times 3 \mathrm{~mm})$ Plastic DFN	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
LT6020IMS8\#PBF	LT6020IMS8\#TRPBF	LTGJG	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
LT6020HMS8\#PBF	LT6020HMS8\#TRPBF	LTGJG	8-Lead Plastic MSOP	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/

ELECTRICAL CHARACTERISTICS The e denotes the specifications which apply over the specified

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ Mid-Supply, $\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{E N}=5 \mathrm{~V}$. DGND and EN specifications only apply to the LT6020-1.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & \text { DD Packages } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 20 | $\begin{gathered} 70 \\ 110 \\ 120 \end{gathered}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \text { MS8 Package } \\ & T_{A}=-40^{\circ} \text { o } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 5 | $\begin{aligned} & \hline 30 \\ & 70 \\ & 80 \\ & \hline \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| $\frac{\Delta V_{\text {OSI }}}{\Delta \text { Temp }}$ | Input Offset Voltage Drift (Note 2) | DD Packages | \bullet | -0.8 | ± 0.3 | 0.8 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| | | MS8 Package | \bullet | -0.5 | ± 0.2 | 0.5 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\frac{\Delta V_{\text {OSI }}}{\Delta T i m e}$ | Long Term Input Offset Voltage Stability | | \bullet | | ± 0.2 | | $\mu \mathrm{V} / \mathrm{Mo}$ |
| I_{B} | Input Bias Current | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{gathered} \hline-3 \\ -3 \\ -10 \end{gathered}$ | ± 0.1 | $\begin{gathered} \hline 3 \\ 3 \\ 10 \end{gathered}$ | nA nA nA |
| los | Input Offset Current | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & -1 \\ & -1 \\ & -2 \end{aligned}$ | ± 0.1 | $\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$ | nA nA nA |
| | Input Noise Voltage | 0.1 Hz to 10 Hz | | | 1.1 | | $\mu \mathrm{V}$ P-P |
| e_{n} | Input Noise Voltage Density | $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$ | | | 50 | | $\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$ |
| in | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 37 | | $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | Common Mode Differential Mode | | | $\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$ | | pF |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | Common Mode Differential Mode | | | $\begin{aligned} & 17 \\ & 20 \end{aligned}$ | | $\mathrm{G} \Omega$ $M \Omega$ |
| VICM | Common Mode Input Range | | \bullet | $\mathrm{V}^{-}+1.2$ | | $\mathrm{V}^{+}-1.4$ | V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\text {CM }}=-13.8 \mathrm{~V}$ to 13.6 V | \bullet | $\begin{aligned} & 120 \\ & 120 \end{aligned}$ | 132 | | dB dB |
| PSRR | Supply Rejection Ratio | $\mathrm{V}_{S}=3 \mathrm{~V}$ to 30 V | \bullet | $\begin{aligned} & 120 \\ & 118 \end{aligned}$ | 140 | | dB dB |
| Avol | Large-Signal Voltage Gain | $\mathrm{R}_{\mathrm{L}}=6.98 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 14 \mathrm{~V}$ | \bullet | $\begin{aligned} & 110 \\ & 108 \\ & \hline \end{aligned}$ | 116 | | dB dB |
| | | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}= \pm 14.5 \mathrm{~V}$ | \bullet | $\begin{aligned} & 126 \\ & 126 \end{aligned}$ | 138 | | dB dB |
| $\mathrm{V}_{0 \mathrm{~L}}$ | Output Swing Low ($\mathrm{V}_{\text {OUT }}-\mathrm{V}^{-}$) | $\begin{aligned} & \hline \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | | 130 | $\begin{aligned} & 200 \\ & 250 \\ & 300 \end{aligned}$ | mV mV mV |
| V_{OH} | Output Swing High ($\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}$) | $\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 100 | $\begin{aligned} & \hline 140 \\ & 165 \\ & 190 \end{aligned}$ | mV mV mV |
| ISC | Short-Circuit Current | $\begin{aligned} & V_{\text {OUT }}=0 \mathrm{~V}, \text { Sourcing } \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$ | \bullet | $\begin{gathered} 5.5 \\ 5 \end{gathered}$ | 8 | | mA mA mA |
| | | $\begin{aligned} & V_{\text {Out }}=0 \mathrm{~V}, \text { Sinking } \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$ | 11 | | mA mA mA |

LT6020/LT6020-1

ELECTRICAL CHARACTERISTICS The denotes the specifications which apply vere the specified

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ Mid-Supply, $\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{E N}=5 \mathrm{~V}$. DGND and EN specifications only apply to the LT6020-1.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SR | Slew Rate | $\begin{aligned} & \mathrm{A}_{\text {vCL }}=1,10 \mathrm{~V} \text { Step } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{gathered} \hline 3 \\ 2.4 \\ 2.4 \end{gathered}$ | 5 | | $\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$ |
| | | $\begin{aligned} & \text { AvCL }=1,5 \mathrm{~V} \text { Step } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{gathered} 1.4 \\ 1.1 \\ 1 \end{gathered}$ | 2.4 | | $\begin{aligned} & \mathrm{V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \\ & \mathrm{~V} / \mu \mathrm{s} \end{aligned}$ |
| GBW | Gain-Bandwidth Product | $\mathrm{f}_{0}=10 \mathrm{kHz}$ | \bullet | 290 | 400 | | kHz |
| | Minimum Supply Voltage | Guaranteed by PSRR | \bullet | 3 | | | V |
| Is | Supply Current per Amplifier | $\begin{aligned} & \mathrm{T}_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | | | 90 | $\begin{aligned} & 100 \\ & 125 \\ & 140 \\ & \hline \end{aligned}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| | Supply Current in Shutdown | $\begin{aligned} & \mathrm{V}_{\text {EN }}=0.8 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 1.4 | $\begin{gathered} 3 \\ 3.2 \\ 3.6 \end{gathered}$ | $\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$ |
| $\mathrm{t}_{\text {s }}$ | Settling Time ($A_{V}=1$) | 0.1% 5V Output Step 0.01\% 5V Output Step 0.0015\% 5V Output Step 0.0015\% 10V Output Step | | | $\begin{gathered} 6 \\ 7.8 \\ 13.8 \\ 12.4 \end{gathered}$ | | $\mu \mathrm{S}$
 US
 $\mu \mathrm{S}$
 $\mu \mathrm{S}$ |
| ton | Enable Time | $A_{V}=1$ | | | 100 | | $\mu \mathrm{s}$ |
| V ${ }^{\text {DGND }}$ | DGND Pin Voltage Range | | \bullet | V^{-} | | $\mathrm{V}^{+}-3$ | V |
| IGGND | DGND Pin Current | | \bullet | | -200 | -400 | nA |
| $\mathrm{I}_{\text {EN }}$ | EN Pin Current | | \bullet | | -100 | -200 | nA |
| VENL | EN Pin Input Low Voltage | Relative to DGND | \bullet | | | 0.8 | V |
| $\mathrm{V}_{\text {ENH }}$ | EN Pin Input High Voltage | Relative to DGND | \bullet | 1.7 | | | V |

LT6020/LT6020-1

ELECTRICAL CHARACTERISTICS The odenotes the specifications which apply over the specified

 temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ Mid-Supply, $\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{E N}=3 \mathrm{~V}$. DGND and EN pin specifications only apply to the LT6020-1.| SYMBOL | PARAMETER | CONDITIONS | | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OS }}$ | Input Offset Voltage | $\begin{aligned} & \text { DD Packages } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 20 | $\begin{aligned} & 100 \\ & 140 \\ & 150 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| | | $\begin{aligned} & \text { MS8 Package } \\ & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 5 | $\begin{aligned} & 45 \\ & 85 \\ & 95 \end{aligned}$ | $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ |
| $\frac{\Delta \mathrm{V}_{\mathrm{OSI}}}{\Delta \mathrm{Temp}}$ | Input Offset Voltage Drift (Note 2) | DD Packages | \bullet | -0.8 | ± 0.3 | 0.8 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| | | MS8 Package | \bullet | -0.5 | ± 0.2 | 0.5 | $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ |
| $\frac{\Delta \mathrm{V}_{\mathrm{OSI}}}{\Delta \mathrm{Time}}$ | Long Term Input Offset Voltage Stability | | \bullet | | ± 0.2 | | $\mu \mathrm{V} / \mathrm{Mo}$ |
| I_{B} | Input Bias Current | | | | ± 1 | | nA |
| los | Input Offset Current | | | | ± 0.1 | | nA |
| | Input Noise Voltage | 0.1 Hz to 10 Hz | | | 1.1 | | $\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$ |
| e_{n} | Input Noise Voltage Density | $\begin{aligned} & f=10 \mathrm{~Hz} \\ & f=1 \mathrm{kHz} \end{aligned}$ | | | $\begin{aligned} & 50 \\ & 46 \end{aligned}$ | | $\begin{aligned} & \mathrm{nV} / \sqrt{\mathrm{Hz}} \\ & \mathrm{nV} / \sqrt{\mathrm{Hz}} \end{aligned}$ |
| in | Input Noise Current Density | $\mathrm{f}=1 \mathrm{kHz}$ | | | 37 | | $\mathrm{fA} / \sqrt{\mathrm{Hz}}$ |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | Common Mode Differential Mode | | | $\begin{aligned} & 1.5 \\ & 2.5 \end{aligned}$ | | pF pF |
| $\mathrm{R}_{\text {IN }}$ | Input Resistance | Common Mode Differential Mode | | | $\begin{aligned} & 17 \\ & 20 \end{aligned}$ | | $\mathrm{G} \Omega$ $\mathrm{M} \Omega$ |
| VICM | Common Mode Input Range | | \bullet | $\mathrm{V}^{-}+1.2$ | | $\mathrm{V}^{+}-1.4$ | V |
| CMRR | Common Mode Rejection Ratio | $\mathrm{V}_{\mathrm{CM}}=1.2 \mathrm{~V}$ to 1.6 V | | | 125 | | dB |
| PSRR | Supply Rejection Ratio | $V_{S}=3 \mathrm{~V}$ to 30 V | - | $\begin{aligned} & \hline 120 \\ & 118 \end{aligned}$ | 140 | | dB dB |
| AVOL | Large-Signal Voltage Gain | $\mathrm{R}_{\mathrm{L}}=6.98 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 2.5 V | - | $\begin{aligned} & 98 \\ & 98 \end{aligned}$ | 108 | | dB dB |
| | | $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 2.5 V | | | 136 | | dB |
| $\mathrm{V}_{\text {OL }}$ | Output Swing Low (VOUT - V^{-}) | $\begin{aligned} & R_{L}=10 \mathrm{k} \Omega \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & T_{A}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 45 | $\begin{aligned} & 100 \\ & 130 \\ & 150 \end{aligned}$ | mV mV mV |
| $\overline{\mathrm{V}_{\mathrm{OH}}}$ | Output Swing High ($\mathrm{V}^{+}-\mathrm{V}_{\text {OUT }}$) | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | | 55 | $\begin{gathered} 80 \\ 90 \\ 100 \end{gathered}$ | mV mV mV |
| ISC | Short-Circuit Current | $\begin{aligned} & V_{\text {OUT }}=1.5 \mathrm{~V}, \text { Sourcing } \\ & \mathrm{T}_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | \bullet | $\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$ | 6 | | mA mA mA |
| | | $\begin{aligned} & \text { Vout }=1.5 \mathrm{~V}, \text { Sinking } \\ & T_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$ | $\bullet \bullet$ | $\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$ | 8 | | mA mA mA |
| SR | Slew Rate (Note 3) | $\mathrm{A}_{\mathrm{VCL}}=-1,2 \mathrm{~V}$ Step | | | 0.2 | | $\mathrm{V} / \mathrm{\mu s}$ |
| GBW | Gain-Bandwidth Product | $\mathrm{f}_{0}=10 \mathrm{kHz}$ | | | 400 | | kHz |
| | Minimum Supply Voltage | Guaranteed by PSRR | \bullet | 3 | | | V |

LT6020/LT6020-1

ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the speciifed temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{S}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=\mathrm{V}_{\text {OUT }}=$ Mid-Supply, $\mathrm{V}_{\mathrm{DGND}}=0 \mathrm{~V}, \mathrm{~V}_{E N}=3 \mathrm{~V}$. DGND and EN pin specifications only apply to the LT6020-1.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
I_{S}	Supply Current per Amplifier	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet		85	$\begin{gathered} 95 \\ 120 \\ 135 \end{gathered}$	μA μA μA
	Supply Current in Shutdown	$\begin{aligned} & \mathrm{V}_{E N}=0.8 \mathrm{~V} \\ & \mathrm{~T}_{A}=-40^{\circ} \text { to } 85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \text { to } 125^{\circ} \mathrm{C} \end{aligned}$	\bullet		0.9	1.1 1.5 3	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
$\mathrm{t}_{\text {s }}$	Settling Time ($A_{V}=-1$)	$\begin{aligned} & \text { 0.1\% 2.4V Output Step } \\ & 0.01 \% \text { 2.4V Output Step } \\ & 0.0015 \% \text { 2.4V Output Step } \end{aligned}$			$\begin{aligned} & 12.4 \\ & 21.2 \\ & 39.2 \end{aligned}$		$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~S} \\ & \mu \mathrm{~S} \end{aligned}$
ton	Enable Time	$A_{V}=1$			120		$\mu \mathrm{S}$
$V_{\text {DGND }}$	DGND Pin Voltage Range		\bullet	V^{-}		$\mathrm{V}^{+}-3$	V
$\underline{\text { IDGND }}$	DGND Pin Current				-200		nA
IEN	EN Pin Current				-100		nA
$\mathrm{V}_{\text {ENL }}$	EN Pin Input Low Voltage	Relative to DGND	\bullet			0.8	V
$\mathrm{V}_{\text {ENH }}$	EN Pin Input High Voltage	Relative to DGND	\bullet	1.7			V

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: Guaranteed by design.

Note 3: The slew rate of the LT6020 increases with the size of the input step. At lower supplies, the input step size is limited by the input common mode range. This trend can be seen in the Typical Performance Characteristics.

TYPICAL PERFORMANCE CHARACTERISTICS
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$, unless
otherwise specified.

Warm-Up Drift

Offset Voltage vs Supply Voltage

Offset Voltage vs Input Common Mode Voltage

LT6020/LT6020-1

TYPICAL PGRFORMAOCE CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$, unless
otherwise specified.

TYPICAL PERFORMANCE CHARACTERISTICS
otherwise specified.

LT6020/LT6020-1

TYPICAL PERFORMANCE CHARACTERISTICS
$T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ unless
otherwise specified.

Enable/Disable Response

60201 G24

Shutdown Supply Current vs

Temperature

Output Saturation Voltage vs Sink Current (Output Low)

Positive Output Overdrive
Recovery

Start-Up Response

Output Saturation Voltage vs Source Current (Output High)

Negative Output Overdrive Recovery

PIn fUnCTIOnS

OUT: Amplifier Output.
-IN: Inverting Input of the Amplifier.
+IN: Noninverting Input of the Amplifier.
\mathbf{V}^{-}: Negative Power Supply. A bypass capacitor should be used between supply pins and ground. Additional bypass capacitance may be used between the power supply pins.
DGND (LT6020-1 Only): Reference for EN Pin. It is normally tied to ground. DGND must be in the range from V^{-}to V^{+} -3 V . If grounded, V^{+}must be $\geq 3 \mathrm{~V}$. The EN pin threshold is specified with respect to the DGND pin. DGND cannot be floated.

EN (LT6020-1 Only): Enable Input. This pin must be connected high, normally to V^{+}, for the amplifiers to be functional. EN is active high with the threshold approximately two diodes above DGND. EN cannot be floated. The shutdown threshold voltage is specified with respect to the voltage on the DGND pin.
V+: Positive Power Supply. A bypass capacitor should be used between supply pins and ground. Additional bypass capacitance may be used between the power supply pins.

SImPLIFIED SCHEmATIC

APPLICATIONS INFORMATION

Preserving Low Power Operation

The proprietary circuitry used in the LT6020 provides an excellent combination of low power, low offset and enhanced slew rate. Normally an amplifier with higher supply current would be required to achieve this combination of slew rate and precision. Special care must be taken to ensure that the low power operation is preserved.

The choice of feedback resistor values impacts several op-amp parameters as noted in the feedback components section. It should also be noted that the output of the amplifier must drive this network. For example, in a gain of two with a total feedback resistance of $10 \mathrm{k} \Omega$ and an output voltage of 14 V , the amplifier's output will need to supply 1.4 mA of current. This current will ultimately come from a supply.

LT6020/LT6020-1

APPLICATIONS INFORMATION

The supply current of the LT6020 increases with large differential input voltages. Normally, this does not impact the low power nature of the LT6020 because the amplifier is forcing the two inputs to be at the same potential. Conditions which cause differential input voltage to appear should be avoided in order to preserve the low power dissipation of the LT6020. This includes but is not limited to: operation as a comparator, excessive loading on the output and overdriving the input.

Enhanced Slew Rate

The LT6020 uses a proprietary input stage which provides an enhanced slew rate without sacrificing input precision specs such as input offset voltage, common mode rejection and noise. The unique input stage of the LT6020 allows the output to quickly slew to its final value when large signal input steps are applied. This enhanced slew characteristic allows the LT6020 to quickly settle the output to 0.0015\% independent of input step size as shown in Figure 1. Typical micropower amplifiers cannot process large amplitude signals with this speed. As shown in the Typical Performance curves, when the LT6020 is configured in unity gain and a 10V step is applied to the input the output will slew at $5 \mathrm{~V} / \mu \mathrm{us}$. In this same configuration, a 5 V input step will slew the output at $2.4 \mathrm{~V} / \mu \mathrm{s}$. Furthermore, a 0.7 V input step will lower the slew rate to $0.2 \mathrm{~V} / \mu \mathrm{s}$. Note that for these

Figure 1. Settling Time Is Essentially Flat
smaller inputs the LT6020 slew rate approaches the slew rate more common in traditional micropower amplifiers.

Input Bias Current

The design of the input stage of the LT6020 is more sophisticated than that shown in the Simplified Schematic. It uses both NPN and PNP input differential amplifiers to sense the input differential voltage. As a result the specified input bias current can flow in or out of the input pins.

Multiplexer Applications/High Dynamic Input Impedance

The LT6020 has features which make it desirable for multiplexer applications, such as the application featured on the back page of this data sheet. When the channels of the multiplexer are cycled, the output of the multiplexer can produce large voltage transitions. Normally, bipolar amplifiers have back-to-back diodes between the inputs, which will turn on when the inputtransient voltage exceeds 0.7 V , causing a large transient current to be conducted from the amplifier output stage back into the input driving circuitry. The driving circuitry then needs to absorb this current and settle before the amplifier can settle. The LT6020 uses 5.5V Zener diodes to protect its inputs which dramatically increases its input impedance with input steps as large as 5 V .

Achieving Rail-to-Rail Operation without Rail-to-Rail Inputs

The LT6020 output is able to swing close to each power supply rail, but the input stage is limited to operating between $\mathrm{V}^{-}+1.2 \mathrm{~V}$ and $\mathrm{V}^{+}-1.4 \mathrm{~V}$. For many inverting applications and noninverting gain applications, this is largely inconsequential. Figure 2 shows the basic op amp configurations, what happens to the op amp inputs and whether or not the op amp must have rail-to-rail inputs.

The circuit of Figure 3 shows an extreme example of the inverting case. The input voltage at the 100k resistor can swing $\pm 13.5 \mathrm{~V}$ and the LT6020 will output an inverted,

APPLICATIONS INFORMATION

Figure 2. Some Op Amp Configurations Do Not Require Rail-to-Rail Inputs to Achieve Rail-to-Rail Outputs

Figure 3. Extreme Inverting Case: Circuit Operates Properly with Input Voltage Swing Well Outside Op Amp Supply Rails
divided-by-ten version of the input voltage. The output accuracy is limited by the resistors to 0.2%. Output referred, this error becomes 2.7 mV . The $30 \mu \mathrm{~V}$ input offset voltage contribution, plus the additional error due to input bias current times the $\sim 10 \mathrm{k}$ effective source impedance, contribute only negligibly to error.

Phase Inversion

The LT6020 input stage is limited to operating between $\mathrm{V}^{-}+$ 1.2 V and $\mathrm{V}^{+}-1.4 \mathrm{~V}$. Exceeding this common mode range will causethe open loop gaintodropsignificantly. Foraunity gain amplifier, the output roughly tracks the input well beyond
the specified input voltage range as shown in Figure 4. However the open loop gain is significantly reduced. While the output roughly tracks the input, the reduction in open loop gain degrades the accuracy of the LT6020 in this region. Exceeding the input common mode range also causes asignificant increase in inputbias current as shown in Figure 5. The output of the LT6020 is guaranteed over the specified temperature range not to phase invertas long as the input voltage does not exceed the supply voltage.

Preserving Input Precision

Preserving the input accuracy of the LT6020 requires that the application circuit and PC board layout do not

Figure 4. No Phase Inversion

APPLICATIONS INFORMATION

Figure 5. Increased Ib Beyond VICM
introduce errors comparable to or greater than the offset of the amplifiers. Temperature differentials across the input connections can generate thermocouple voltages of tens of microvolts so the connections of the input leads should be short, close together and away from heat dissipating components. Air currents across the board can also generate temperature differentials.

As is the case with all amplifiers, a change in load current changes the finite open loop gain. Increased load current reduces the open loop gain as seen in the Typical Performance Characteristics section. This results in a change in input offset voltage. Under large signal conditions with load currents of $\pm 2 \mathrm{~mA}$ the effective change in input error is just tens of microvolts. In precision applications it is important to consider amplifier loading when selecting feedback resistor values as well as the loads on the device.

Feedback Components

Care must be taken to ensure that the pole formed by the feedback resistors and the parasitic capacitance at the inverting input does not degrade stability. For example, in a gain of +2 configuration, with 100 k feedback resistors and a poorly designed circuit board layout with parasitic capacitance of 10pF (amplifier + PC board) at the amplifier's inverting input will cause the amplifier to have poor phase margin due to a pole formed at 320 kHz . An additional capacitor of 10pF across the feedback resistor as shown in Figure 6 will eliminate any ringing or oscillation.

Figure 6. Stability with Parasitic Input Capacitance

Capacitive Loads

The LT6020 can drive capacitive loads up to 100pF in unity gain. The capacitive load driving capability increases as the amplifier is used in higher gain configurations. A small series resistance between the output and the load will further increase the amount of capacitance that the amplifier can drive.

Shutdown Operation (LT6020-1)

The LT6020-1 shutdown function has been designed to be easily controlled from single supply logic or microcontollers. To enable the LT6020-1 when $V_{\text {DGND }}=0 \mathrm{~V}$ the enable pin must be driven above 1.7V. Conversely, to enter the low power shutdown mode the enable pin must be driven below 0.8 V . In a $\pm 15 \mathrm{~V}$ dual supply application where $\mathrm{V}_{\text {DGND }}=-15 \mathrm{~V}$, the enable pin must be driven above $\sim-13.3 \mathrm{~V}$ to enable the LT6020-1. If the enable pin is driven below -14.2 V the LT6020-1 enters the low power shutdown mode. Note that to enable the LT6020-1 the enable pin voltage can range from -13.3 V to 15 V whereas to disable the LT6020-1 the enable pin can range from -15 V to -14.2 V . Figure 7 shows examples of enable pin control. While in shutdown, the outputs of the LT6020-1 are high impedance.

The LT6020-1 is typically capable of coming out of shutdown within 100μ s. This is useful in power sensitive applications where duty cycled operation is employed such as wireless mesh networks. In these applications the system is in low power mode the majority of the time, but then needs to wake up quickly and settle for an acquisition before being powered back down to save power.

APPLICATIONS INFORMATION

HIGH VOLTAGE
SPLIT SUPPLIES

HIGH VOLTAGE
SINGLE SUPPLY

LOW VOLTAGE SINGLE SUPPLY

LOW VOLTAGE SPLIT SUPPLIES 60201 f07

Figure 7. LT6020-1 Enable Pin Control Examples

TYPICAL APPLICATIONS

High Open-Loop Gain Composite Amplifier

Parallel Amplifiers Achieves $32 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, Doubles Output Drive and Lowers Offset

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DD Package
8-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1698 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

BOTTOM VIEW—EXPOSED PAD

NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-1)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

DD Package

10-Lead Plastic DFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1699 Rev C)

RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS

4
NOTE:

1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE MO-229 VARIATION OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT 2. DRAWING NOT TO SCALE
2. ALL DIMENSIONS ARE IN MILLIMETERS
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15 mm ON ANY SIDE
4. EXPOSED PAD SHALL BE SOLDER PLATED
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE

PACKAGE DESCRIPTION

Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.

MS8 Package
8-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1660 Rev G)

REVISION HISTORY

| REV | DATE | DESCRIPTION | PAGE NUMBER |
| :---: | :---: | :--- | :---: | :---: |
| A | $04 / 14$ | Added MS8 package version. | All |

LT6020/LT6020-1

TYPICAL APPLICATION

Gain of 11 Instrumentation Amplifier

60201 F03a

Improved Load Drive Capability

$\pm 13.6 \mathrm{~V}$ Input Range MUX Buffer

MUX Buffer Response, 12V Step

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC6256	6.5MHz, $65 \mu \mathrm{~A}$ RRIO Op Amp	$\mathrm{V}_{\text {OS }}: 350 \mu \mathrm{~V}, \mathrm{GBW}: 6.5 \mathrm{MHz}$, SR: $1.8 \mathrm{~V} / \mu \mathrm{s}, \mathrm{e}_{\mathrm{n}}: 20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Is: $65 \mu \mathrm{~A}$
LT1352	3MHz. 200V/us Op Amp	$V_{\text {OS }}: 600 \mu \mathrm{~V}, \mathrm{GBW}: 3 \mathrm{MHz}, \mathrm{SR}: 200 \mathrm{~V} / \mu \mathrm{s}, \mathrm{e}_{\mathrm{n}}: 14 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, IS: $330 \mu \mathrm{~A}$
LT1492	5MHz, 3V/us Op Amp	$\mathrm{V}_{\text {OS }}: 180 \mu \mathrm{~V}, \mathrm{GBW}: 5 \mathrm{MHz}, \mathrm{SR}: 3 \mathrm{~V} / \mu \mathrm{s}, \mathrm{e}_{\mathrm{n}}: 16.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$, Is $: 550 \mu \mathrm{~A}$
LTC5800	SmartMesh ${ }^{\text {® }}$ Wireless Sensor Network IC	Wireless Mesh Networks
LT5400	Quad Matched Resistor Network	0.01\% Matching

[^0]: © , LT, LTC, LTM, Linear Technology, SmartMesh and the Linear logo are registered trademarks and SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners. Patent Pending.

